Use of artificial intelligence to forecast demand for services and optimize management in the tourism sector.

  • José Luis Correa-Remache Universidad Católica de Cuenca, Cuenca, Azuay, Ecuador.
  • Edwin Joselito Vásquez-Erazo Universidad Católica de Cuenca, Cuenca, Azuay, Ecuador.
Keywords: Artificial intelligence, marketing, tourism, technological innovation, consumer, (UNESCO Thesaurus)

Abstract

The research aimed to implement artificial intelligence to optimize service demand forecasting and improve operational management in the tourism sector. The research was descriptive and applied to hotel owners and managers. The results reflect a broadly favorable perception of artificial intelligence, as most participants believe that this technology contributes significantly to improving planning and operational efficiency, while a smaller group perceives partial contributions. Artificial intelligence is consolidating its position as a strategic tool that allows demand to be anticipated, services to be personalized, and the competitiveness of formal tourism to be strengthened, promoting modern, sustainable, and customer-centric management. In conclusion, artificial intelligence not only transforms hotel operational management, but also promotes a vision of sustainable tourism development based on efficiency, innovation, and customer satisfaction.

Downloads

Download data is not yet available.

Author Biographies

José Luis Correa-Remache, Universidad Católica de Cuenca, Cuenca, Azuay, Ecuador.
Edwin Joselito Vásquez-Erazo, Universidad Católica de Cuenca, Cuenca, Azuay, Ecuador.

References

Albarracín, R. (2023). Logistics 4.0: Exploring artificial intelligence trends in efficient supply chain management. Data and Metadata., 1-14. https://n9.cl/yzs42
Aldoradin, L., Aliaga, A., & Vásquez , J. (2024). Inventory management and stock optimization in the general industry: A systematic review. Latin American and Caribbean Consortium of Engineering Institutions (LACCEI), 22, 45–57. https://n9.cl/0njsf

Bolaños , L., & Vidal , C. (2021). The impact of inventory holding costs on the strategic design of supply chains. Revista Facultad de Ingeniería, Universidad de Antioquia(101), 45-54. https://n9.cl/940ipu

Bravo , J., Alarcón, L., Valdivia, G., & Serquen, M. (2023). Predicción de visitantes mediante modelos de aprendizaje automático en el sector turístico peruano. Revista Peruana de Investigación en Turismo y Tecnología, 12, 55-74. https://n9.cl/n9xbg

Calle, A., Erazo, J., & Vásquez, E. (2022). Impacto de la responsabilidad social empresarial en las instituciones de salud privadas de Azogues, Ecuador. . Universidad Y Sociedad, 14(5), 621-629. https://n9.cl/xkibw8

Camara, I., Monteiro, J., & Marques, O. (2022). Modelos e determinantes da demanda turística internacional: perspectivas a partir da revisão sistemática da literatura para o período de 2000-2020. Revista Brasileira de Pesquisa em Turismo, 16, 1–14. https://n9.cl/lenuz

Castillo, I., Guevara, E., & Villamar, C. (2025). Inteligencia artificial en la industria de la hospitalidad latinoamericana: una revisión de alcance. Revista Iberoamericana de Innovación y Turismo, 12, 45–62. https://n9.cl/uh4mz

Chernysh, O., Smishko, O., Koverninska, Y., Prokopenko, M., & Pistunov, I. (2024). The role of artificial intelligence in financial analysis and forecasting using data and algorithms. (A. A. Castillo, Ed.) Data and Metadata, 3, 1-16. https://n9.cl/f035dw

Fernández, R., Vilalta, J., Quintero, A., & Díaz, L. (2021). La demanda turística en una cadena hotelera: Series temporales para un modelo de predicción. Visión de Futuro: Revista Científica, 109-134. https://n9.cl/lr9pk

Ferreira, G. (2024). Deep learning enhanced metamodel design based on reduced mode shapes for delamination identification in composite structures. Neural Computing and Applications, 1-12. https://n9.cl/c5vo2

Frómeta, J., & Pérez, J. (2020). Hybrid heuristic model for inventory routing management in a fuel commercial entity. Revista de Métodos Cuantitativos para la Economía y la Empresa, 363-383. https://n9.cl/g11xzc
Fundación municipal de turismo para Cuenca. (2023). Informe de rendición de cuentas 2023. Cuenca: Fundación municipal de turismo para Cuenca. https://n9.cl/nlzlm.

Gobierno provincial del Azuay. (2019). Plan de desarrollo y ordenamiento territorial del Azuay 2019–2030. Cuenca: Gobierno provincial del Azuay. https://n9.cl/dq7b8

Instituto nacional de estadística y censos. (2024). Registro estadístico de entradas y salidas internacionales 2023. Quito: Registro oficial. https://n9.cl/7r4g76

Játiva, K., Erazo, J., & Murillo, D. (2024). Atracción y retención de estudiantes universitarios: El poder de las estrategias de Marketing. Revista Conrado, 427–436. https://n9.cl/77ckc

Mohammad, A., Khanfar, I., Al Oraini, B., Vasudevan, A., Mohammad, S., & Fei, Z. (2024). Predictive analytics on artificial intelligence in supply chain optimization. Data and Metadata, 1-15. https://n9.cl/ey3n3t

Naranjo, M., & Martínez, M. (2022). Reflexiones teóricas sobre la demanda turística global: Incidencia en la gestión y comercialización turística. Revista de Ciencias Sociales (Ve), 28, 359-372. https://www.redalyc.org/articulo.oa?id=28071845029

Paredes , A., Ciro , K., & Jaramillo, J. (2022). Simulation of an inventory policy based on the demand driven MRP methodology from a Petri nets approach. Industrial Engineering, 27, 41-54. https://n9.cl/zojhpu

Prado, M., & Quintella, M. (2023). Artificial intelligence applied to assess perceptions of the quality of e-commerce logistics: Case study of Rio de Janeiro. FUCAPE Business School Journal, 1-20. https://n9.cl/aht5i

Pulido , A., Pizarro , A., Padilla, M., Sánchez, M., & De la Rosa, L. (2020). An optimization approach for inventory costs in probabilistic inventory models: A case study. Ingeniare. Revista Chilena de Ingeniería, 28(3), 383-395. https://n9.cl/kg083p
Published
2025-12-01
How to Cite
Correa-Remache, J. L., & Vásquez-Erazo, E. J. (2025). Use of artificial intelligence to forecast demand for services and optimize management in the tourism sector. Gestio Et Productio. Revista Electrónica De Ciencias Gerenciales , 7(2), 347-366. https://doi.org/10.35381/gep.v7i2.679